Trispentafluorophenylphosphine Complexes of Rhodium, Palladium, and Platinum

By R. D. W. KEMMITT*, D. I. NICHOLS, and R. D. PEACOCK

(Department of Chemistry, The University, Leicester)

RECENT crystallographic studies have shown that in some phenylphosphine complexes of transition metals there is interaction between an *ortho*hydrogen of the phenyl ring and the metal atom.^{1,2} This observation has led us to study metal complexes of trispentafluorophenylphosphine, since the ¹⁹F n.m.r. spectra of these compounds might indicate if there is a similar interaction between the *ortho*-fluorines and the metal. Trispentafluorophenylphosphine is a very weak base; thus we find there is no protonation in concentrated sulphuric acid and complex formation does not occur with boron trifluoride even at -78° .

Reaction of $(C_6F_5)_3P$ (abbreviated P_F) with hydrated rhodium trichloride in refluxing ethanol gives a green crystalline solid in high yield after a few hours. This is diamagnetic ($\mu = 0 \pm 0.3$ B.M.

at 25°) and its formula has been shown by analysis and molecular weight to be $(P_F)_4 Rh_2 Cl_2$, a chlorinebridged complex of rhodium(1). The green solid has also been prepared quantitatively from $P_{\mathbf{F}}$ and tetrakis(ethylene)- $\mu\mu'$ -dichlorodirhodium(I).

The phosphine ligands are easily displaced. Reaction with cyclo-octa-1,5-diene gives the bis(cyclo-octa-1,5-diene)- $\mu\mu$ '-dichlorodinhodium(I), and triphenylphosphine and triphenyl phosphite give the complexes L_3 RhCl [L = Ph₃P, or (PhO)₃P]. However, carbon monoxide gives $(P_{F})_{2}$ RhCOCl. None of these reactions is reversible.

The complex $(P_{\mathbf{F}})_2$ RhCOCl has also been prepared from P_F and RhCl₃, xH_2O in refluxing β methoxyethanol. It has one carbonyl frequency at 2004 cm.⁻¹ (Nujol mull), some 50 cm.⁻¹ higher than that observed for (Ph₃P)₂RhCOCl.

(P_F)₂RhCOCl to Liquid chlorine oxidizes $(P_F)_2 RhCOCl_3 \text{ and } (P_F)_4 Rh_2 Cl_2 \text{ to } (P_F)_4 Rh_2 Cl_6.$ These rhodium(III) complexes are unstable in solution.

Addition of an aqueous solution of potassium tetrachloroplatinate(II) to a hot ethanolic solution of P_F gives the yellow complex $(P_F)_2$ PtCl₂. The complexes $(P_{\mathbf{F}})_{2}MX_{2}$ (M = Pd or Pt; X = Cl or Br) are similarly prepared. $P_{\mathbf{F}}$ and platinous iodide in xylene gives $(P_{\mathbf{F}})_2 PtI_2$. The infrared spectra (400-200 cm.-1) of the chloride and bromide complexes exhibit only one metal halogen stretch (Table) and hence they presumably have the trans-configuration.

 $(P_{\mathbf{F}})_{\mathbf{2}}MX_{\mathbf{2}}$ (M = Pd; X = Br; M = Pt; X = Br or I). On cooling a chloroform solution of the complex $(P_{F})_{2}$ PtI₂ to -20° , the ortho-signal sharpens and three equally spaced bands of the same intensity are observed, indicating three pairs of nonequivalent atoms (Table). The meta- and para-signals remain unchanged. At -20° the ortho-fluorine absorption of (P_F)₂PtBr₂ similarly shows three bands of equal intensity but not now equally spaced. In $(P_{\rm F})_2 PtCl_2$ at -40° the two high-field ortho-fluorine bands merge and two peaks are observed with intensity ratio 1:2.

These observations may be tentatively interpreted as follows. When the C_6F_5 rings rotate and the phosphine also rotates about the phosphorus to platinum bond there is equivalence of all the ortho-fluorines as is observed in the n.m.r. of the chloride complex at 35°. If there is no rotation about the (P-Pt) bond but the rings are still rotating one ring of the phosphine becomes nonequivalent and a 4:2 ortho-fluorine pattern results. This is observed for the chloride at -40° . If the rings and the phosphine are both stationary, three pairs of nonequivalent fluorine atoms result giving the 2:2:2 ortho-pattern observed in the bromide and iodide complexes at -20° . (The 4:2 chloride pattern could be the 2:2:2 pattern with the two bands superimposed.) The spectrum of the iodide complex on warming from -20° to 35° shows no intermediate 4:2 ortho-pattern and we attribute this to the simultaneous onset of rotation of the phosphine and the rings. The

					I.r.		¹⁹ F n.m.r. ⁸			
				ע(M–X) cm1	ortho	para	meta	°c	
$(P_F)_2 PtCl_2$			••	••	351	62.3	79.9	95.1	35°	
						57.6, 66.3	79.5	94·6	-40°	
$(P_F)_2 PtBr_2$			••	• •	255	broad	80.2	$95 \cdot 2$	35°	
						54.6 , 62.9, 67.0	80.2	$95 \cdot 1$	-20°	
$(P_F)_2 PtI_2$	••	••	••	••		broad	80.3	95.5	35°	
· ·						53·4 , 60·5, 67·3	80.7	95.2	-20°	
$(P_F)_{2}PdCl_{2}$		••	••		365	62.3	79.9	95.0	35°	
$(\mathbf{P_F})$, PdBr,	••	••	••		275	broad	80.0	94.9	35°	
(P _F), RhCOC	1		••			62.9	81.7	$95 \cdot 2$	3 5°	
Pr ^b	••	••	••		—	67.2	85.3	97.0		

TABLE

^a CHCl_a solutions; chemical shifts in p.p.m. upfield from benzotrifluoride (internal standard) measured at 19.3 Mc./sec. The ortho-, meta-, and para-fluorines are always in the expected ratio 2:2:1. ^b H. J. Emeléus and J. M. Miller, J. Inorg. Nuclear Chem., 1966, 28, 662.

The ¹⁹F n.m.r. spectra of the complexes $(P_F)_2MCl_2$ and $(P_F)_2RhCOCl$ give patterns similar to those observed for the free phosphine (Table). However, there is considerable broadening of the ortho-fluorine absorption in the complexes greater hindrance to rotation of the C₆F₅ rings in the bromide and iodide complexes as compared to the chloride complex is in agreement with molecular models which indicate ortho-fluorine steric interactions with the halogen atom. The metal itself must have some influence on the relative chemical shifts of the *ortho*-fluorines but it is not possible as yet to comment on the presence of either repulsive or attractive forces between the *ortho*-fluorine atoms and the metal.

(Received, May 9th, 1967; Com. 448.)

¹ N. A. Bailey, J. M. Jenkins, R. Mason, and B. L. Shaw, Chem. Comm., 1965, 237; 296. ² S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.